Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Med Virol ; 95(2): e28484, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173238

ABSTRACT

The apprehension of needles related to injection site pain, risk of transmitting bloodborne pathogens, and effective mass immunization have led to the development of a needle-free injection system (NFIS). Here, we evaluated the efficacy of the NFIS and needle injection system (NIS) for the delivery and immunogenicity of DNA vaccine candidate ZyCoV-D in rhesus macaques against SARS-CoV-2 infection. Briefly, 20 rhesus macaques were divided into 5 groups (4 animals each), that is, I (1 mg dose by NIS), II (2 mg dose by NIS), III (1 mg dose by NFIS), IV (2 mg dose by NFIS) and V (phosphate-buffer saline [PBS]). The macaques were immunized with the vaccine candidates/PBS intradermally on Days 0, 28, and 56. Subsequently, the animals were challenged with live SARS-CoV-2 after 15 weeks of the first immunization. Blood, nasal swab, throat swab, and bronchoalveolar lavage fluid specimens were collected on 0, 1, 3, 5, and 7 days post infection from each animal to determine immune response and viral clearance. Among all the five groups, 2 mg dose by NFIS elicited significant titers of IgG and neutralizing antibody after immunization with enhancement in their titers postvirus challenge. Besides this, it also induced increased lymphocyte proliferation and cytokine response. The minimal viral load post-SARS-CoV-2 challenge and significant immune response in the immunized animals demonstrated the efficiency of NFIS in delivering 2 mg ZyCoV-D vaccine candidate.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , SARS-CoV-2 , Macaca mulatta , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
2.
Comput Biol Med ; 147: 105788, 2022 08.
Article in English | MEDLINE | ID: covidwho-1914269

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the worldwide spread of coronavirus disease 19 (COVID-19), and till now, it has caused death to more than 6.2 million people. Although various vaccines and drug candidates are being tested globally with limited to moderate success, a comprehensive therapeutic cure is yet to be achieved. In this study, we applied computational drug repurposing methods complemented with the analyses of the already existing gene expression data to find better therapeutics in treatment and recovery. Primarily, we identified the most crucial proteins of SARS-CoV-2 and host human cells responsible for viral infection and host response. An in-silico screening of the existing drugs was performed against the crucial proteins for SARS-CoV-2 infection, and a few existing drugs were shortlisted. Further, we analyzed the gene expression data of SARS-CoV-2 in human lung epithelial cells and investigated the molecules that can reverse the cellular mRNA expression profiles in the diseased state. LINCS L1000 and Comparative Toxicogenomics Database (CTD) were utilized to obtain two sets of compounds that can be used to counter SARS-CoV-2 infection from the gene expression perspective. Indomethacin, a nonsteroidal anti-inflammatory drug (NSAID), and Vitamin-A were found in two sets of compounds, and in the in-silico screening of existing drugs to treat SARS-CoV-2. Our in-silico findings on Indomethacin were further successfully validated by in-vitro testing in Vero CCL-81 cells with an IC50 of 12 µM. Along with these findings, we briefly discuss the possible roles of Indomethacin and Vitamin-A to counter the SARS-CoV-2 infection in humans.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Indomethacin/pharmacology , Vitamins
3.
Comp Immunol Microbiol Infect Dis ; 85: 101800, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1757204

ABSTRACT

Nipah virus (NiV) is one of the priority pathogens with pandemic potential. Though the spread is far slower than SARS-CoV-2, case fatality is the biggest concern. Fruit bats belonging to genus Pteropus are identified to be the main reservoir of the virus causing sporadic cases and outbreaks in Malaysia, Bangladesh and India. The sudden emergence of Nipah in Kerala, India during 2018-2019 has been astonishing with respect to its introduction in the unaffected areas. With this, active Nipah virus surveillance was conducted among bat populations in Southern part of India viz., Karnataka, Kerala, Tamil Nadu, Telangana, Puducherry and Odisha during January-November 2019. Throat swabs/rectal swabs (n = 573) collected from Pteropus medius and Rousettus leschenaultii bat species and sera of Pteropus medius bats (n = 255) were screened to detect the presence of Nipah viral RNA and anti-Nipah IgG antibodies respectively. Of 255 P. medius bats sera samples, 51 bats (20%) captured from Karnataka, Kerala, Tamil Nadu and Puducherry demonstrated presence of anti-Nipah IgG antibodies. However, the presence of virus couldn't be detected in any of the bat specimens. The recent emergence of Nipah virus in Kerala in September 2021 warrants further surveillance of Nipah virus among bat populations from the affected and remaining states of India.


Subject(s)
COVID-19 , Chiroptera , Nipah Virus , Animals , COVID-19/veterinary , Immunoglobulin G , India/epidemiology , Nipah Virus/genetics , SARS-CoV-2
4.
Front Public Health ; 10: 818545, 2022.
Article in English | MEDLINE | ID: covidwho-1731870

ABSTRACT

We report here a Nipah virus (NiV) outbreak in Kozhikode district of Kerala state, India, which had caused fatal encephalitis in a 12-year-old boy and the outbreak response, which led to the successful containment of the disease and the related investigations. Quantitative real-time reverse transcription (RT)-PCR, ELISA-based antibody detection, and whole genome sequencing (WGS) were performed to confirm the NiV infection. Contacts of the index case were traced and isolated based on risk categorization. Bats from the areas near the epicenter of the outbreak were sampled for throat swabs, rectal swabs, and blood samples for NiV screening by real-time RT-PCR and anti-NiV bat immunoglobulin G (IgG) ELISA. A plaque reduction neutralization test was performed for the detection of neutralizing antibodies. Nipah viral RNA could be detected from blood, bronchial wash, endotracheal (ET) secretion, and cerebrospinal fluid (CSF) and anti-NiV immunoglobulin M (IgM) antibodies from the serum sample of the index case. Rapid establishment of an onsite NiV diagnostic facility and contact tracing helped in quick containment of the outbreak. NiV sequences retrieved from the clinical specimen of the index case formed a sub-cluster with the earlier reported Nipah I genotype sequences from India with more than 95% similarity. Anti-NiV IgG positivity could be detected in 21% of Pteropus medius (P. medius) and 37.73% of Rousettus leschenaultia (R. leschenaultia). Neutralizing antibodies against NiV could be detected in P. medius. Stringent surveillance and awareness campaigns need to be implemented in the area to reduce human-bat interactions and minimize spillover events, which can lead to sporadic outbreaks of NiV.


Subject(s)
COVID-19 , Nipah Virus , Child , Disease Outbreaks , Humans , Male , Nipah Virus/genetics , Pandemics , SARS-CoV-2
5.
Rev Med Virol ; 31(5): 1-11, 2021 09.
Article in English | MEDLINE | ID: covidwho-1574954

ABSTRACT

The clinical severity, rapid transmission and human losses due to coronavirus disease 2019 (Covid-19) have led the World Health Organization to declare it a pandemic. Traditional epidemiological tools are being significantly complemented by recent innovations especially using artificial intelligence (AI) and machine learning. AI-based model systems could improve pattern recognition of disease spread in populations and predictions of outbreaks in different geographical locations. A variable and a minimal amount of data are available for the signs and symptoms of Covid-19, allowing a composite of maximum likelihood algorithms to be employed to enhance the accuracy of disease diagnosis and to identify potential drugs. AI-based forecasting and predictions are expected to complement traditional approaches by helping public health officials to select better response and preparedness measures against Covid-19 cases. AI-based approaches have helped address the key issues but a significant impact on the global healthcare industry is yet to be achieved. The capability of AI to address the challenges may make it a key player in the operation of healthcare systems in future. Here, we present an overview of the prospective applications of the AI model systems in healthcare settings during the ongoing Covid-19 pandemic.


Subject(s)
Artificial Intelligence , COVID-19/epidemiology , Delivery of Health Care , Humans , Pandemics
6.
Nat Commun ; 12(1): 1386, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1114712

ABSTRACT

The COVID-19 pandemic is a global health crisis that poses a great challenge to the public health system of affected countries. Safe and effective vaccines are needed to overcome this crisis. Here, we develop and assess the protective efficacy and immunogenicity of an inactivated SARS-CoV-2 vaccine in rhesus macaques. Twenty macaques were divided into four groups of five animals each. One group was administered a placebo, while three groups were immunized with three different vaccine candidates of BBV152 at 0 and 14 days. All the macaques were challenged with SARS-CoV-2 fourteen days after the second dose. The protective response was observed with increasing SARS-CoV-2 specific IgG and neutralizing antibody titers from 3rd-week post-immunization. Viral clearance was observed from bronchoalveolar lavage fluid, nasal swab, throat swab and lung tissues at 7 days post-infection in the vaccinated groups. No evidence of pneumonia was observed by histopathological examination in vaccinated groups, unlike the placebo group which exhibited interstitial pneumonia and localization of viral antigen in the alveolar epithelium and macrophages by immunohistochemistry. This vaccine candidate BBV152 has completed Phase I/II (NCT04471519) clinical trials in India and is presently in phase III, data of this study substantiates the immunogenicity and protective efficacy of the vaccine candidates.


Subject(s)
COVID-19 Vaccines/therapeutic use , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Female , Immunohistochemistry , Lymphocytes/immunology , Lymphocytes/metabolism , Macaca mulatta , Male , Pneumonia/immunology , Pneumonia/metabolism
7.
Indian J Med Res ; 151(2 & 3): 226-235, 2020.
Article in English | MEDLINE | ID: covidwho-113825

ABSTRACT

Background & objectives: Bats are considered to be the natural reservoir for many viruses, of which some are potential human pathogens. In India, an association of Pteropus medius bats with the Nipah virus was reported in the past. It is suspected that the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also has its association with bats. To assess the presence of CoVs in bats, we performed identification and characterization of bat CoV (BtCoV) in P. medius and Rousettus species from representative States in India, collected during 2018 and 2019. Methods: Representative rectal swab (RS) and throat swab specimens of Pteropus and Rousettus spp. bats were screened for CoVs using a pan-CoV reverse transcription-polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase (RdRp) gene. A single-step RT-PCR was performed on the RNA extracted from the bat specimens. Next-generation sequencing (NGS) was performed on a few representative bat specimens that were tested positive. Phylogenetic analysis was carried out on the partial sequences of RdRp gene sequences retrieved from both the bat species and complete viral genomes recovered from Rousettus spp. Results: Bat samples from the seven States were screened, and the RS specimens of eight Rousettus spp. and 21 Pteropus spp. were found positive for CoV RdRp gene. Among these, by Sanger sequencing, partial RdRp sequences could be retrieved from three Rousettus and eight Pteropus bat specimens. Phylogenetic analysis of the partial RdRp region demonstrated distinct subclustering of the BtCoV sequences retrieved from these Rousettus and Pteropus spp. bats. NGS led to the recovery of four sequences covering approximately 94.3 per cent of the whole genome of the BtCoVs from Rousettus bats. Three BtCoV sequences had 93.69 per cent identity to CoV BtRt-BetaCoV/GX2018. The fourth BtCoV sequence was 96.8 per cent identical to BtCoV HKU9-1. Interpretation & conclusions: This study was a step towards understanding the CoV circulation in Indian bats. Detection of potentially pathogenic CoVs in Indian bats stresses the need for enhanced screening for novel viruses in them. One Health approach with collaborative activities by the animal health and human health sectors in these surveillance activities shall be of use to public health. This would help in the development of diagnostic assays for novel viruses with outbreak potential and be useful in disease interventions. Proactive surveillance remains crucial for identifying the emerging novel viruses with epidemic potential and measures for risk mitigation.


Subject(s)
Chiroptera/virology , Coronavirus/classification , Coronavirus/isolation & purification , Genome, Viral , Animals , High-Throughput Nucleotide Sequencing , India , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL